I have made the following corrections to Problem Sets and Solutions June 7, 2012:

B. 6 Problems

3. Change the column label from $[x]+2$ to $x+2$.

D. 3 Solutions

9. replace $\ddot{a}_{\infty}^{(4)}$ with $\ddot{a}_{\infty}^{(4)}$.

E. 1 Problems

1. Equivalence Principle was added to the given information.

E. 1 Solutions

8. I made the solution more detailed to include the following:

The premium has two parts:

1. $\bar{P}\left(\bar{A}_{x}\right)$ which is the benefit premium for $\$ 1$ of whole life insurance paid at the moment of death. Thus this part of the premium will cover the benefit of 1 .
2. K. This is will pay for the other benefit which is the sum of the premiums paid.

If the person died after 1 year the total premiums paid would be $\bar{P}\left(\bar{A}_{x}\right)+K$. The person died after 2 years the total premiums paid would be $2\left[\bar{P}\left(\bar{A}_{x}\right)+K\right]$. And so on. So the benefit for the return of premiums is an increasing whole life insurance that increases by $\bar{P}\left(\bar{A}_{x}\right)+K$ each year. The APV of the premiums for this benefit must equal the APV of the benefits.

E. 2 Solutions

8. in the first equation replace 0.5 with 0.05 .
9. in the first equation, first term should be -0.08 instead of -0.8 .

E. 3 Solutions

5. change "the smaller the total annual payment" to "the larger the total annual payment".

E. 4 Solutions

4. replace 0.01 with 0.1 .

F. 1 Solutions

- header should be F. 1 Solutions.

G. 1 Solutions

3. replace 0.65 with 0.25 .
4. in the diagram, replace 3000 with 2500 .

H. 1 Solutions

18. replace 0.2716 with 0.02716 .

J. 1 Problems

5. All answer choices should be the square root of.

J. 1 Solutions

1. replace $1.05^{2} .5$ with $1.05^{2.5}$.
2. both amounts should be divided by 12 . Replace 1.08^{18} and 1.08^{19} with 1.05^{18} and 1.05^{19} respectively.
3. replace " $\delta-0.04$ " with " $\delta=0.04$ ". Replace $0.3764 N$ with $0.06392 N$ and $0.3229 N$ with $0.075973 N$. The answer is $\sqrt{0.0012}$ instead of 0.0012 .
