
FERM Ch 9: Some Useful Statistics

Chapter 9: Some Useful Statistics (Background Only)

Source Author: Paul Sweeting (2017)

Video By: J. Eddie Smith, IV, FSA

FERM Ch 9: Some Useful Statistics

Key Exam Topics in This Lesson

Basic Statistics Basic Sample Population Statistics Skew and Kurtosis Normal Distribution (a.k.a. Elliptical or Gaussian) Typical Risk Distribution Types of Correlation Measures BA II Plus Calculator Practice!

Basic Sample Population Statistics

For a univariate sample of *T* observations:

Sample Mean =
$$\overline{X} = \frac{1}{T} \sum_{t=1}^{T} X_t$$

Median = 50th percentile
Mode = the most common observation
Sample Variance = $s^2 = \frac{1}{T-1} \sum_{t=1}^{T} (X_t - \overline{X})^2$
Range = max X_t – min X_t

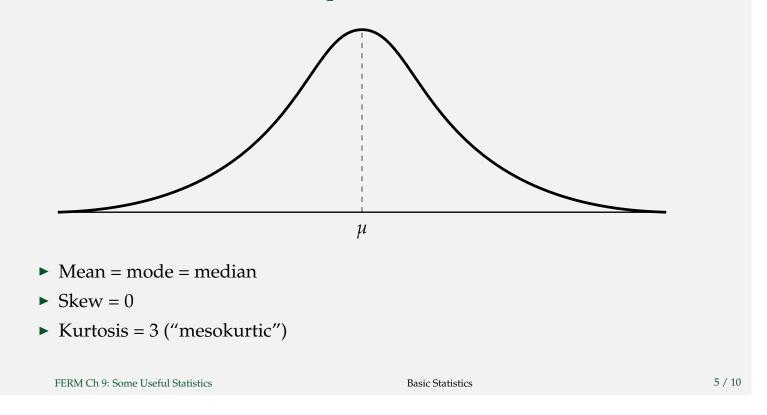
For a 2-variable sample (correlation and covariance):

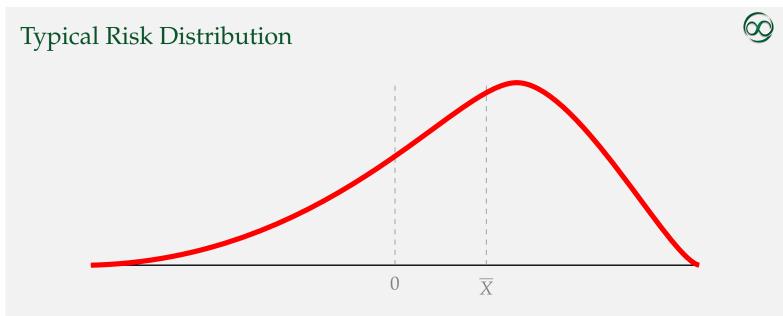
$$r_{X,Y} = \frac{s_{X,Y}}{s_X s_Y} \qquad \qquad s_{X,Y} = \frac{1}{T-1} \sum_{t=1}^T \left(X_t - \overline{X} \right) \left(Y_t - \overline{Y} \right)$$
FERM Ch 9: Some Useful Statistics Basic Statistics 3 / 1

Skew and Kurtosis

Skew = third central moment, normalized

$$\omega = \frac{1}{T} \left(\frac{\sum_{t=1}^{T} (X_t - \mu)^3}{\sigma^3} \right)$$
(Population)
$$w = \left(\frac{T}{(T-1)(T-2)} \right) \left(\frac{\sum_{t=1}^{T} (X_t - \overline{X})^3}{s^3} \right)$$
(Sample)


Kurtosis = fourth central moment, normalized against Gaussian distribution


$$\kappa = \frac{1}{T} \frac{\sum_{t=1}^{T} (X_t - \mu)^4}{\sigma^4} - 3$$
 (Population)
$$k = \left(\frac{T(T+1)}{(T-1)(T-2)(T-3)}\right) \left(\frac{\sum_{t=1}^{T} (X_t - \overline{X})^4}{s^4}\right) - \frac{3(T-1)^2}{(T-2)(T-3)}$$
 (Sample)

Basic Statistics

Normal Distribution (a.k.a. Elliptical or Gaussian)

- Skew < 0: long left tail \Rightarrow many more worse-than-expected results
- ► Kurtosis > 3 ("leptokurtic"): fatter tails ⇒ higher probability of extreme results

Types of Correlation Measures

1. Pearson's rho – a.k.a. linear correlation

$$\rho = \frac{\sigma_{X,Y}}{\sigma_X \sigma_Y} \qquad \qquad r_{X,Y} = \frac{s_{X,Y}}{s_X s_Y}$$

2. Spearman correlation = Pearson linear correlation of the observations' ranks

 $\rho_s = \rho[\text{Ranks of } X, \text{Ranks of } Y]$

3. Kendall's tau - measures the observations' tendency to move together

 $\tau = \frac{\text{Concordant Pairs} - \text{Discordant Pairs}}{\text{Total Possible Pairs}}$

4. Tail correlation – correlation of tail values only

FERM Ch 9: Some Useful Statistics

BA II Plus Calculator Practice!

Suppose we have 5 observations of *X* and *Y*

t	X_t	Y_t
1	10	20
2	95	25
3	15	10
4	35	15
5	45	30

Calculate the following statistics using your BA II Plus calculator:

- 1. Sample mean of *X* and *Y*
- 2. Sample standard deviation of *X* and *Y*
- 3. Covariance of *X* and *Y*
- 4. Linear correlation of *X* and *Y*

7 / 10

Basic Statistics

No peeking!

FERM Ch 9: Some Useful Statistics

BA II Plus Calculator Practice!

See video for a walk through of the BA II Plus's statistical functions!

t	X_t	Y_t
1	10	20
2	95	25
3	15	10
4	35	15
5	45	30
Sample mean	40.00	20.00
S	33.91	7.91

$$s_{X,Y} = \frac{1}{4} \sum_{t=1}^{5} (X_t - 40) (Y_t - 20) = 150$$
$$r_{X,Y} = \frac{150}{33.91 \times 7.91} = 55.92\% = \text{Pearson's rho}$$

FERM Ch 9: Some Useful Statistics

Basic Statistics

Basic Statistics

