
VEE Mathematical Statistics - Formula Sheet

Sample Statistics

Sample Mean: X̄ =
∑n
i=1

1
n
xi

Sample Variance, µ known:

S2 = 1
n

∑n
i=1(xi − µ)2

Sample Variance, µ unknown:

S2 = 1
n−1

∑n
i=1(xi − x̄)2

Sample statistic following a standard

normal distribution:
X̄ − µ
σ/
√
n
∼ N(0, 1)

Sample statistic following a T-distribution:

X̄ − µ
s/
√
n
∼ Tn−1 forX ∼ N(µ, σ2), n ≤ 30

Sample statistic following a chi square dist.:

(n− 1)S2

σ2
∼ χ2

n−1 forX ∼ N(µ, σ2)

Sample statistic following an F-distribution:

S2
1/σ

2
1

S2
2/σ

2
2
∼ Fn1−1,n2−1 forX1, X2 ∼ N(µ, σ2)

F-distribution critical values:

fk1,k2,1−α = 1/fk2,k1,α

Likelihood

L(θ) = Likelihood function

L(θ|X1, X2, ...., Xn) = f(X1, X2, ...., Xn|θ)

=
∏n
i=1 f(Xi|θ)

`(θ) = lnL(θ) = loglikelihood function

I(θ) = Fischer Information

I(θ) = E

[[ d ln(f(x|θ))
dθ

]2]
= −E

[[ d2 ln(f(x|θ))
d2θ

]]
for a sample of size n, In(θ) = nI(θ)

Cramér-Rao Inequality

V ar(θ̂) ≥ 1+ d
dθ
Bias(θ̂)2

nI(θ)

if θ̂ is unbiased, V ar(θ̂) ≥ 1
nI(θ)

Point Estimates

θ = Parameter to estimate

θ̂ = Estimate of θ

biasθ̂(θ) = E[θ̂]− θ

Var[θ̂] = E[θ̂ − E(θ̂)2] = E[θ̂2]− E[θ̂]2

Mean Square Error

MSEθ̂(θ) = E[(θ̂ − θ)2]

MSEθ̂(θ) = Var[θ̂] +
(
biasθ̂(θ)

)2
Efficiency: e(θ̂) =

1/nI(θ)

Var(θ̂)

Minimum Variance Unbiased Estimator

θ is an MVUE if biasθ̂(θ) = 0 AND

for all other unbiased θ̂,′ MSEθ̂ ≤ MSEθ̂′

Consistency

θ̂ is a consistent estimator of θ if

P [|θ̂ − θ| > ε] −→ 0 as n −→∞

practically, if MSE(θ̂)→ 0 as n→∞

Percentile Matching

F (πp) = p = p×100%, the 100pth perecentile

Smoothed emp. per. π̂i/(n+1) = ith obs.

Percentile Matching: Set θ̂ so that πp = π̂p

Method of Moments

One Parameter: E[X] = X̄

More than one: E[Xk] = 1
n

∑
XK
i

orV ar(X) = 1
n

∑
(Xi − X̄)2

Solve system of equations for parameters

MLE

Procedure:

1. Write L(λ;X)

2. Take the natural log

3. Compute `′(λ;X) = d
dλ
`(λ;X)

4. Set equal to zero and solve for λ.

MLE = MoM

Exponential (θ)

Gamma (θ when α is known)

Poisson (λ)

Binomial (p when n is known)

Geometric (β)

Neg. Binomial (β when r is known)

Normal (µ, σ2)

Confidence Intervals

CI on µ, σ2known, or n large:

Two-sided 100(1− α)%CI:

x̄− zα/2 σors√n ≤ µ ≤ x̄+ zα/2
σors√
n

Upper One-sided 100(1− α)%CI:

µ ≤ x̄+ zα
σors√
n

Lower One-sided 100(1− α)%CI:

µ ≥ x̄− zα σors√n

CI on µ, σ2unknown, and n small:

Two-sided 100(1− α)%CI:

x̄− tn−1,α/2
s√
n
≤ µ ≤ x̄+ tn−1,α/2

s√
n

CI on µ1 − µ2, σ2known, or n large:

Two-sided 100(1− α)%CI:

x̄− ȳ − zα/2

√
σ2
1ors

2
1

n1
+
σ2
2ors

2
2

n2
≤ µ1 − µ2

≤ x̄− ȳ + zα/2

√
σ2
1ors

2
1

n1
+
σ2
2ors

2
2

n2

CI on µ1 − µ2, σ2unknown, and n small:

Two-sided 100(1− α)%CI:

x̄− ȳ − tv,α/2

√
s21
n1

+
s22
n2
≤ µ1 − µ2

≤ x̄− ȳ + tv,α/2

√
s21
n1

+
s22
n2

where v =
(w1+w2)

2

w2
1/(n1−1)+w2

2/(n2−1)

with w1 = s21/n1 andw2 = s22/n2

CI on σ2, X ∼ N(µ, σ2):

Two-sided 100(1− α)%CI:

χ2
n−1,1−α/2 ≤

(n−1)S2

σ2 ≤ χ2
n−1,α/2

Upper One-sided 100(1− α)%CI:

σ2 ≤ (n−1)S2

χ2
n−1,1−α

Lower One-sided 100(1− α)%CI:

σ2 ≥ (n−1)S2

χ2
n−1,α
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Confidence Intervals, Cont.

CI on σ2
1/σ

2
2, X ∼ N(µ, σ2):

Two-sided 100(1− α)%CI:

1
fn1−1,n2−1,α/2

S2
1

S2
2
≤ σ2

1

σ2
2

≤ 1
fn1−1,n2−1,1−α/2

S2
1

S2
2

CI on a proportion, p, for n large:

Two-sided 100(1− α)%CI:

p̂− zα/2
√
p̂(1−p̂)
n

≤ p ≤ p̂+ zα/2

√
p̂(1−p̂)
n

CI on p1 − p2, for n1, n2 large:

Two-sided 100(1− α)%CI:

p̂1−p̂2−zα/2
√
p̂1(1−p̂1)

n1
+
p̂2(1−p̂2)

n2
≤ p1−p2

≤ p̂1 − p̂2 + zα/2

√
p̂1(1−p̂1)

n1
+
p̂2(1−p̂2)

n2

Hypothesis Testing - General

C = Critical Region;T = Test Statistic

Reject H0 if T is in C.

Type I error: Reject H0 when it is true

This is a False Positive

Type II error: Fail to reject H0 when it is false

This is a False Negative

α = Significance Level of the test,

= max
θ in H0

Pθ[Type I error]

βθ = Pθ[Type II error]

1− βθ = Power of the test = Power(θ)

A level α test is Uniformly Most Powerful

(UMP) if its power is

≥ the power of any other α test

p-value =

P [T at least as extreme as observed | H0]

Simple hypothesis:

Determines data distribution, ie. µ = µ0

Compound hypothesis:

Determines a set of data distributions, ie.

µ ≤ µ0

Hypothesis Tests on the Mean

For X ∼ N(µ, known σ2)

Upper One-Sided Test:

reject H0 if
x̄− µ0
σ/
√
n
> zα

Lower One-Sided Test:

reject H0 if
x̄− µ0
σ/
√
n
< −zα

Two-Sided Test:

reject H0 if

∣∣∣∣ x̄− µ0σ/
√
n

∣∣∣∣ > zα/2

For X ∼ Any Dist. and large n

Same as above, but substitute σ with s

For X ∼ N(µ, unknown σ2), n small

Same as above, but substitute σ with s,

and zα with tn−1,α or α/2

Hypothesis Tests on the Variance

For X ∼ N(µ, σ2)

Upper One-Sided Test:

reject H0 if
(n− 1)S2

σ2
> χ2

n−1,α

Lower One-Sided Test:

reject H0 if
(n− 1)S2

σ2
< χ2

n−1,1−α

Two-Sided Test:

reject H0 if
(n− 1)S2

σ2
< χ2

n−1,1−α/2

OR
(n− 1)S2

σ2
> χ2

n−1,α/2

Chi Square Goodness-of-Fit Test

k = num. of groups/categories,

H0 = a given distribution

Ei = Expected in category i under H0

Oi = Observed in categroy i∑ (Oi − Ei)2

Ei
=
∑ (Ei −Oi)2

Ei
= χ2

d

d = k − 1− r

r = num. of parameters estimated from data

Reject H0 if χ2
d > critical value

Contingency Tables

H0 = data are independent

H1 = data are not independent

Ei,j = expected obs. in row i column j

Oi,j = obs. in row i column j∑2
i,j=1

(Oi,j−Ei,j)2

Ei,j
= χ2

d

d = (r − 1)(c− 1) r = rows c = columns

Reject H0 if χ2
d > critical value

Building the Table:

1. Transform totals into probabilities

by dividing each cell by n

2. Fill in cells with (totals x probabilities)

3. Mult. each cell by n to get Ei,j
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Neyman Pearson

Most powerful test rejects H0 : θ = θ0

for H1 : θ = θ1for a given α if

L(θ1|x1, x2, ..., xn)

L(θ0|x1, x2, ..., xn)
> k

To find most powerful test:

1. Determine likelihood functions forH0, H1

2. Set up ratio of L1/L0 > k

3. Simplify, simplify, simplify

4. Isolate xis as much as possible

5. Get rid of k-side and replace with k*

6. Under H0, find. k* s.t.

P (g(xi) ≥ k∗) = α

Likelihood Ratio Test

H0 : data comes from distribution A,

with likelihood L0

H1 : data comes from distribution B,

with likelihood L1,where B generalizes A

T = 2[ln(L1)− ln(L0)] ∼ χ2
d

d = num. of extra est. parameters in H1

Reject H0 if T > critical value

Information Criteria

k = num. of parameters est. from data

L̂ = value of likelihood function at MLE

n = num. of obs. used to find L̂

Akaike Information Criteria:

AIC = 2k − 2ln(L̂)

Bayesian Information Criteria:

BIC = ln(n)k − 2ln(L̂)

Best model has lowest AIC/BIC
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