VEE Mathematical Statistics - Formula Sheet

Sample Statistics Sample Mean: $\bar{X} = \sum_{i=1}^{n} \frac{1}{n} x_i$ Sample Variance, μ known: $S^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$ Sample Variance, μ unknown: $S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$ Sample statistic following a standard normal distribution: $\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$ Sample statistic following a T-distribution: $\frac{\bar{X} - \mu}{s/\sqrt{n}} \sim T_{n-1} \quad for X \sim N(\mu, \sigma^2), n \le 30$ Sample statistic following a chi square dist.: $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1} \quad for X \sim N(\mu, \sigma^2)$ Sample statistic following an F-distribution: $\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F_{n_1-1,n_2-1} \quad for X_1, X_2 \sim N(\mu, \sigma^2)$ F-distribution critical values: $f_{k_1,k_2,1-\alpha} = 1/f_{k_2,k_1,\alpha}$

Likelihood
$L(\theta) =$ Likelihood function
$L(\theta X_1, X_2,, X_n) = f(X_1, X_2,, X_n \theta)$
$= \prod_{i=1}^{n} f(X_i \theta)$
$\ell(\theta) = \ln L(\theta) = $ loglikelihood function
$I(\theta) = $ Fischer Information
$I(\theta) = E\left[\left[\frac{d\ln(f(x \theta))}{d\theta}\right]^2\right]$
$= -E\left[\left[\frac{d^2 \ln(f(x \theta))}{d^2\theta}\right]\right]$
for a sample of size $n, I_n(\theta) = nI(\theta)$
Cramér-Rao Inequality
$Var(\hat{\theta}) \geq \frac{1 + \frac{d}{d\theta} Bias(\hat{\theta})^2}{nI(\theta)}$

if $\hat{\theta}$ is unbiased, $Var(\hat{\theta}) \geq \frac{1}{nI(\theta)}$

Point Estimates
$\theta = Parameter to estimate$
$\hat{\theta} = \text{Estimate of } \theta$
$\operatorname{bias}_{\hat{\theta}}(\theta) = \operatorname{E}[\hat{\theta}] - \theta$
$\operatorname{Var}[\hat{\theta}] = E[\hat{\theta} - E(\hat{\theta})^2] = E[\hat{\theta}^2] - E[\hat{\theta}]^2$
Mean Square Error
$\mathrm{MSE}_{\hat{\theta}}(\theta) = \mathrm{E}[(\hat{\theta} - \theta)^2]$
$\mathrm{MSE}_{\hat{\theta}}(\theta) = \mathrm{Var}[\hat{\theta}] + (\mathrm{bias}_{\hat{\theta}}(\theta))^2$
Efficiency: $e(\hat{\theta}) = \frac{1/nI(\theta)}{\operatorname{Var}(\hat{\theta})}$
Minimum Variance Unbiased Estimator
θ is an MVUE if $\mathrm{bias}_{\hat{\theta}}(\theta)=0$ AND
for all other unbiased $\hat{\theta},'~\mathrm{MSE}_{\hat{\theta}} \leq \mathrm{MSE}_{\hat{\theta}'}$
Consistency
$\hat{\theta}$ is a consistent estimator of θ if
$P[\hat{\theta} - \theta > \epsilon] \longrightarrow 0 \text{ as } n \longrightarrow \infty$
practically, if $MSE(\hat{\theta}) \to 0$ as $n \to \infty$

	MLE	Confidence Intervals
	Procedure:	CI on μ , σ^2 known, or n large:
	1. Write $L(\lambda; \mathbb{X})$	Two-sided $100(1 - \alpha)$ %CI:
	2. Take the natural log	$\bar{x} - z_{\alpha/2} \frac{\sigma ors}{\sqrt{n}} \le \mu \le \bar{x} + z_{\alpha/2} \frac{\sigma ors}{\sqrt{n}}$
	3. Compute $\ell'(\lambda; \mathbb{X}) = \frac{d}{d\lambda} \ell(\lambda; \mathbb{X})$	Upper One-sided $100(1 - \alpha)$ %CI:
	4. Set equal to zero and solve for λ .	$\mu \le \bar{x} + z_\alpha \frac{\sigma ors}{\sqrt{n}}$
		Lower One-sided $100(1 - \alpha)$ %CI:
	MLE = MoM	$\mu \geq \bar{x} - z_{\alpha} \frac{\sigma ors}{\sqrt{n}}$
	Exponential (θ)	CI on μ , σ^2 unknown, and n small:
	Gamma (θ when α is known)	Two-sided $100(1 - \alpha)$ %CI:
	Poisson (λ)	$\bar{x} - t_{n-1,\alpha/2} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}$
ĵ/	Binomial $(p \text{ when } n \text{ is known})$	CI on $\mu_1 - \mu_2$, σ^2 known, or <i>n</i> large:
,	Geometric (β)	Two-sided $100(1 - \alpha)$ %CI:
	Neg. Binomial (β when r is known)	$\bar{x} - \bar{y} - z_{\alpha/2} \sqrt{\frac{\sigma_1^2 ors_1^2}{n_1} + \frac{\sigma_2^2 ors_2^2}{n_2}} \le \mu_1 - \mu_2$
	Normal (μ, σ^2)	$ \leq \bar{x} - \bar{y} + z_{\alpha/2} \sqrt{\frac{\sigma_1^2 or s_1^2}{n_1} + \frac{\sigma_2^2 or s_2^2}{n_2}} $
		¥ - 2

Percentile Matching

 $F(\pi_p) = p = p \times 100\%$, the 100pth percentile Smoothed emp. per. $\hat{\pi}_{i/(n+1)} = i^{\text{th}}$ obs. Percentile Matching: Set $\hat{\theta}$ so that $\pi_p = \hat{\pi}_p$

Method of Moments One Parameter: $E[X] = \bar{X}$ More than one: $E[X^k] = \frac{1}{n} \sum X_i^K$ $\operatorname{or} Var(X) = \frac{1}{n} \sum (X_i - \bar{X})^2$ Solve system of equations for parameters

 $2\sqrt{\frac{\sigma_1^2 or s_1^2}{n_1} + \frac{\sigma_2^2 or s_2^2}{n_2}} \le \mu_1 - \mu_2$ $\alpha/2\sqrt{\frac{\sigma_1^2 or s_1^2}{n_1} + \frac{\sigma_2^2 or s_2^2}{n_2}}$ CI on $\mu_1 - \mu_2$, σ^2 unknown, and *n* small: Two-sided $100(1 - \alpha)$ %CI: $\bar{x} - \bar{y} - t_{v,\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \le \mu_1 - \mu_2$ $\leq \bar{x} - \bar{y} + t_{v,\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ where v = $\frac{(w_1+w_2)^2}{w_1^2/(n_1-1)+w_2^2/(n_2-1)}$ with $w_1 = s_1^2/n_1$ and $w_2 = s_2^2/n_2$ CI on σ^2 , $X \sim N(\mu, \sigma^2)$: Two-sided $100(1-\alpha)$ %CI: $\chi^2_{n-1,1-\alpha/2} \le \frac{(n-1)S^2}{\sigma^2} \le \chi^2_{n-1,\alpha/2}$

Upper One-sided $100(1 - \alpha)$ %CI:

 $\sigma^2 \leq \frac{(n-1)S^2}{\chi^2_{-1}}$ Lower One-sided $100(1 - \alpha)$ %CI: $\sigma^2 \ge \frac{(n-1)S^2}{\chi^2_{n-1,\alpha}}$

©2019 The Infinite Actuary

Hypothesis Testing - GeneralHypothesis Tests on the Mean
$$C = Critical Region; T = Test StatisticFor $X \sim N(\mu, \operatorname{known} \sigma^2)$ $\operatorname{Reject} H_0$ if T is in C.Upper One-Sided Test: $\operatorname{Type I error:}$ Reject H_0 when it is true
This is a False Positive $\operatorname{reject} H_0$ if $\frac{\tilde{x} - \mu_0}{\sigma/\sqrt{n}} > z_{\alpha}$ $\operatorname{Type II error:}$ Fail to reject H_0 when it is false
This is a False Negative $\operatorname{Lower One-Sided Test:}$ $\alpha = \operatorname{Significance Level of the test, $= \rho \operatorname{in} H_0$ $\mathcal{P}_0[\operatorname{Type I I error]}$ $\operatorname{Two-Sided Test:}$ $\beta \rho = \mathcal{P}_0[\operatorname{Type I I error]}$ $\Gamma \to \beta_{\theta} = \operatorname{Power of the test = \operatorname{Power}(\theta)$ $\operatorname{Same as above, but substitute σ with s $\Lambda \operatorname{level} \alpha$ test is Uniformly Most Powerful
(UMP) if its power is
 \geq the power of any other α test $\operatorname{For} X \sim N(\mu, \operatorname{unknown} \sigma^2)$, n small $\operatorname{Same as above, but substitute σ with s ,
and z_{α} with $t_{n-1,\alpha \text{ or } \alpha/2}$ $\operatorname{For} X \sim N(\mu, \sigma^2)$ $\operatorname{Simple hypothesis:}$
 $\operatorname{Determines data distribution, ie. $\mu = \mu_0$ $\operatorname{For} X \sim N(\mu, \sigma^2)$ $\operatorname{Compound hypothesis:}$
 $\operatorname{Determines a set of data distributions, ie. $\mu \leq \mu_0$ $\operatorname{Hypothesis Tests on the Variance}$ $\operatorname{Pict} H_0$ if $(\frac{n-1)S^2}{\sigma^2} < \chi^2_{n-1,\alpha}$ $\operatorname{Lower One-Sided Test:}$ $\operatorname{reject} H_0$ if $(\frac{n-1)S^2}{\sigma^2} < \chi^2_{n-1,1-\alpha}/2$ $\operatorname{Ore} (\frac{(n-1)S^2}{\sigma^2} < \chi^2_{n-1,1-\alpha/2}/2$ $\operatorname{Ore} (\frac{(n-1)S^2}{\sigma^2} < \chi^2_{n-1,1-\alpha/2}/2$ $\operatorname{Ore} (\frac{(n-1)S^2}{\sigma^2} < \chi^2_{n-1,1-\alpha/2}/2$ $\operatorname{Ore} (\frac{(n-1)S^2}{\sigma^2} < \chi^2_{n-1,1-\alpha/2}/2$ $\operatorname{Ore} (\frac{(n-1)S^2}{\sigma^2} < \chi^2_{n-1,1-\alpha/2}/2}$ $\operatorname{Ore} (\frac{(n-1)S^2}{\sigma^2} < \chi^2_{n-1,1-\alpha/2}/2}/2$ $\operatorname{Ore} (\frac{(n-1)S^2}{\sigma^2} < \chi^2_{n-1,1-\alpha/2}/2}/2$$$$$$$$

by the sis Tests on the MeanChi Square Goodness-of-Fit Test
$$E \sim N(\mu, \text{known } \sigma^2)$$
 $k = \text{ num. of groups/categories,}$ $\mu = 0$ or One-Sided Test: $h_0 = a$ given distribution $e \text{ject } H_0$ if $\frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}} > z_{\alpha}$ $E_i = \text{Expected in category } i$ under H_0 $O_i = \text{Observed in category } i$ $E_i = \text{Expected in category } i$ $e \text{ject } H_0$ if $\frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}} < -z_{\alpha}$ $\sum \frac{(O_i - E_i)^2}{E_i} = \sum \frac{(E_i - O_i)^2}{E_i} = \chi_d^2$ $d = k - 1 - r$ $r = \text{ num. of parameters estimated from data $e \text{ject } H_0$ if $\left|\frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}\right| > z_{\alpha/2}$ $r = \text{ num. of parameters estimated from data $E \sim N(\mu, \text{ unknown } \sigma^2), n$ small $e \text{ as above, but substitute } \sigma$ with s , $d = x \text{ on } (\mu, \text{ unknown } \sigma^2), n$ small $H_0 = \text{ data are independent}$ $H_1 = \text{ data are not independent}$ $H_1 = \text{ data are not independent}$ $E_{i,j} = \text{ expected obs. in row } i \text{ column } j$$$

Tests on the Variance

 $O_{i,j} = \text{ obs. in row } i \text{ column } j$ $\sum_{i,j=1}^{2} \frac{(O_{i,j} - E_{i,j})^2}{E_{i,j}} = \chi_d^2$ d = (r-1)(c-1) r = rows c = columns Reject H_0 if $\chi^2_d > \,$ critical value Building the Table: 1. Transform totals into probabilities by dividing each cell by n2. Fill in cells with (totals x probabilities)

```
3. Mult. each cell by n to get E_{i,j}
```

Neyman Pearson	Informa
Most powerful test rejects $H_0: \theta = \theta_0$	k = num
for $H_1: \theta = \theta_1$ for a given α if	$\hat{L} = \text{value}$
$\frac{L(\theta_1 x_1, x_2,, x_n)}{L(\theta_0 x_1, x_2,, x_n)} > k$	n = num.
To find most powerful test:	Akaike Ir
1. Determine likelihood functions for H_0, H_1	AIC = 2i
2. Set up ratio of $L_1/L_0 > k$	
3. Simplify, simplify, simplify	Bayesian
4. Isolate x_i s as much as possible	BIC = lr
5. Get rid of k-side and replace with $\mathbf{k^*}$	Best mod
6. Under H_0 , find. k* s.t.	

Likelihood	Ratio	Test

 $P(g(x_i) \geq k^*) = \alpha$

H_0 : data comes from distribution A,
with likelihood L_0
H_1 : data comes from distribution B,
with likelihood L_1 , where B generalizes A
$T = 2[ln(L_1) - ln(L_0)] \sim \chi_d^2$
$d =$ num. of extra est. parameters in H_1
Reject H_0 if $T >$ critical value

Information Criteria
k = num. of parameters est. from data
$\hat{L} =$ value of likelihood function at MLE
$n =$ num. of obs. used to find \hat{L}
Akaike Information Criteria:
$AIC = 2k - 2ln(\hat{L})$
Bayesian Information Criteria:
$BIC = ln(n)k - 2ln(\hat{L})$
Best model has lowest AIC/BIC